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Abstract- This paper describes an approach to continu-
ous coevolution of form (the morphology) and function
(the control behavior) for autonomous vehicles. This
study focuses on coevolution of the characteristics such
as beam width and range of individual sensors in the
sensor suite, and the reactive strategies for collision-free
navigation for an autonomous micro air vehicle. The re-
sults of the evolution of the system in a fixed simulation
model were compared to case-based anytime learning
(also called continuous and embedded learning) where
the simulation model was updated over time to better
match changes in the environment.

1 Introduction

Autonomous vehicles that can change their own morphol-
ogy on the fly are highly desirable in many domains. For
example, the ability of an air vehicle to modify its air frame
and the configuration of its control surfaces during cer-
tain stages of the flight, such as take offs, attacks, or land-
ings, would have a direct impact on the system’s efficiency,
performance, and safety. This shape-shifting or morphing
mechanism would also be desirable in an Urban Search and
Rescue robot to enhance its ability to traverse difficult inter-
nal structures within collapsed buildings.

Evolutionary algorithms have been successfully applied
to automate the design of robots’ morphology, the design
of the controllers, and more recently to coevolution of form
and function. It is our belief that the natural process of co-
evolving the form and function of living organisms can be
applied to the design of morphology and control behaviors
of autonomous vehicles in order to simplify the design pro-
cess and improve the performance of the system. In our
work, coevolution of form and function has been applied
to the micro air vehicle (MAV) domain. The design of the
sensory payload and the controller for an MAV is compli-
cated by the size of the vehicle (wingspan on the order of
6 inches), its limited payload, and a great variety of possi-
ble applications. The design issue addressed explicitly in
this study is minimization of power requirements. It is as-
sumed that power efficiency is inversely proportional to the
coverage of the sensor suite. The work presented here is an
extension of the research published in [Bugajska 2000] and
[Bugajska 2002].

In addition, an important problem arising for all au-
tonomous vehicles that are expected to perform tasks for
extended periods is how to adapt the components of the
system in response to unexpected changes in the environ-
ment or in their own capabilities in close to real time. Con-

tinuous and embedded learning (also called anytime learn-
ing) [Grefenstette 1992] is a general approach to continuous
learning in changing environments. The vehicle’s learning
module continuously tests new strategies in an embedded
simulation model which is updated in response to changes
in the environment. In the past, this approach has been suc-
cessfully applied to learning and adaptation of robotic be-
haviors in dynamic environments as well as in situations
where the robot experiences sensor failures. This study fo-
cuses specifically on the continuous coevolution of a mini-
mal sensor suite, which allows for most efficient collision-
free navigation, in a changing environment. The approaches
to evolution in a simulation without feedback from the task
environment, are compared to case-based continuous and
embedded learning [Ramsey 1994] in a simulation where
such feedback exists.

The remainder of this paper briefly outlines the related
work and then continues with a description of our imple-
mentation of coevolution of the characteristics of a sensor
suite and collision-free navigation of an MAV. The simu-
lated environment, aircraft, and sensors are described along
with the details of the learning system. Finally, the initial
results of the learning experiments in a changing environ-
ment are discussed, and the future direction of the research
is outlined.

2 Coevolution of Form and Function

In recent years, the result of the evolution of behav-
iors for autonomous agents in simulation ([Nolfi 1994,
Harvey 1992, Schultz 1996, Potter 2001]) and real world
([Floreano 1996]), and research in automation of structural
design ([Husbands 1996, Funes 1997, Lichtensteiger 1999,
Lund 1997, Mark 1998]), has lead researchers to explore
the concept of coevolution of form and function for au-
tonomous agents. [Cliff 1993] and [Cliff 1996] present
research on concurrent evolution of neural network con-
trollers and visual sensor morphologies, for visually guided
tracking. [Sims 1994] presents a system for the coevolu-
tion of morphology and behavior of virtual creatures that
compete in a physically simulated three-dimensional world.
Similar work is presented in [Hornby 2001] where the body
and brain of the creatures are evolved using Lindenmayer
systems as generative encoding. In [Lee 1996] a hybrid ge-
netic programming/genetic algorithm approach is presented
that allows for evolution of both controllers and robot bod-
ies to achieve behavior-specified tasks. [Balakrishnan 1996]
presents the comparative study of evolution of a control sys-
tem given a fixed sensor suite, and coevolution of sensor



characteristics (placement and range) and the control ar-
chitecture for the task of box pushing. In previous work
[Bugajska 2000] and [Bugajska 2002], we explored coevo-
lution of the beam width of the individual sensors in the
sensor suite and the collision-free navigation behavior in
context of different controller representations and coevolu-
tion approaches in micro air vehicles. This study extends
the previous work by exploring the coevolution of form
and function in the context of changing environments; we
combine the coevolution of form and function with anytime
learning technique. In addition, this study extends our pre-
vious work by evolving the sensing range of the individual
sensors in addition to the beam width.

2.1 Representation

In this study, each individual (chromosome) in the popula-
tion, contains the genetic material describing the informa-
tion of both the morphology and the control behavior of
the autonomous agent. The characteristics of the sensor
suite are encoded in a floating-point vector with elements
for beam width and the range of individual sensors in the
suite (Section 5.1). The collision-free navigation behavior is
represented as a set of stimulus-response rules (Section 4.1).

2.2 Environment

A high-fidelity, 3-D flight simulator (Fig. 1), which includes
an accurate parameterized model of a 6-inch MAV, has been
used to model the environment and the vehicle. The simula-
tion allows the user to control the aircraft by specifying only
the turn rate values; the speed and altitude of the plane are
adjusted appropriately by low-level PID controllers. In this
study, the MAV is controlled by specifying discreet turning
rates between 20 and 20 degrees in 5-degree increments.

The trees (obstacles) are modeled as spheres on top of
cylinders. Any contact between the plane and the tree con-
stitutes a collision. The density of trees is user-defined as
the number of trees per square foot assuming uniform distri-
bution and varied from 1.25 to 5.0 trees per hundred square
feet. At the beginning of each simulated flight, the MAV
is placed at a random location within a specified area away
from the target. The target is stationary and reachable dur-
ing every trial.

The simulated MAV has a sensor, which returns the rela-
tive range and bearing to the target. It is also equipped with
an array of range sensors positioned symmetrically along
the direction of flight and radially from the center of the
vehicle. Each sensor is capable of detecting obstacles and
returning the range to the closest object within its field of
view. The beam width and the range of the individual range
sensors are evolved along with control behavior.

2.3 Fitness Function

The morphology of the sensor suite and the control behavior
of the MAV are evolved in simulation. During each evalu-
ation, a number of episodes is performed that begins with
placement of the MAV at a random distance away from
the target facing in a random direction, which is followed

Figure 1: The screenshot of the 3-D simulated environment
used for the experiments. The white sphere marks the target
and dark gray (green) spheres with light gray cylinders mark
the obstacles (trees).

by a random placement of trees in the environment. The
episodes end with either a successful arrival of the MAV at
the target location, a loss of the MAV due to energy/time
running out, or a loss of the MAV due to collision with an
obstacle. The fitness of the individual is based on the qual-
ity of the sensor suite and execution of the task and as in our
previous work is defined as follows:

if (reached the goal)
payoff is based on

the distance MAV traveled (Section 4.3)
PLUS
the quality of the sensor suite (Section 5.3)

else if (collision or time out occured)
payoff based on

the distance away from target (Section 4.3)

It should be noted that the contribution due to the quality
of the sensor suite is considered only once the task perfor-
mance is satisfactory and that payoff is only assigned at the
end of the episode.

3 Continuous and Embedded Learning

The main focus of this study is coevolution of form and
function for extended periods in changing environments.
Continuous and embedded learning ([Grefenstette 1992,
Ramsey 1994]) is a general approach to continuous learn-
ing in a changing environment. As shown in Figure 2, the
agents learning module continuously tests new strategies
against a simulation model of the environment, and dynam-
ically updates the knowledge base (behaviors) used by the
agent. The execution module controls the agents interac-
tion with the environment, and includes a monitor process
that can dynamically modify the simulation model based on
its observation of the environment. When the simulation
model is modified, the learning process continues with the
modified model. The learning system is assumed to oper-
ate indefinitely, and the execution system uses the results
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Figure 2: The anytime (also known as continuous and em-
bedded) learning model.

of learning as they become available. This learning ap-
proach was previously used to continuously evolve tracking
behaviors ([Grefenstette 1992]) and door traversing behav-
ior ([Schultz 2000]) in face of changing environment and
changes in the agent’s own capabilities such as sensor fail-
ures.

In this instantiation of anytime learning, the only mea-
surable aspect of the environment is the density of the ob-
stacles (trees). When the monitor detects the change, the
environment model is updated and the learning system is
re-initialized. Currently, the system is re-initialized using a
combination of previously evolved strategies chosen based
on their fitness and the similarity of the model under which
they were evolved, and a simple default strategy.

4 Evolution of Function

The performance of the system is determined by the agent’s
ability to perform the task. In our study, the MAV must
be able to efficiently and safely navigate among obstacles
(trees) to a target location. The desired behavior should
maximize the number of times the MAV reaches the target
location while minimizing the distance traveled to that lo-
cation. Every single evaluation is performed in a randomly
created environment (random MAV position and orienta-
tion, random, but uniform tree placement, etc.) with com-
plexity determined by the tree density.

4.1 Problem Representation

In this study, the collision-free navigation behavior is im-
plemented as a collection of stimulus-response rules (see
[Bugajska 2002] for alternative approach). Each stimulus-
response rule consists of conditions that match against the
current sensors of the agent, and an action that suggests ac-
tion to be performed by it. For example, a rule (gene), which
states that if there is an obstacle fairly close and roughly
ahead of the vehicle, even when the goal is also ahead of it,
the vehicle should turn left, could be represented as:

RULE 122
IF sonar4 < 45 AND bearing = [-20, 20]
THEN SET turn_rate = -100

Each rule has an associated strength with it as well as a num-
ber of other statistics. During each decision cycle, all the
rules that match the current state are identified. Conflicts
are resolved in favor of rules with higher strength. Rule
strengths are updated based on rewards received after each
training episode. The following stimuli were defined:

• range1 .. range9: Value between 0.5 and 20 feet in
1-foot increments, which specifies the distance to the
closest obstacle within sensors field of view.

• range: Value between 0 and 800 feet in 1-foot incre-
ments, which specifies the distance to the target.

• bearing: Value between -180 and 180 degrees in 20-
degree increments, which specifies the bearing to the
target.

The action parameter, turnrate, specified the turn rate
for the MAV and took on values between -20 and 20 degrees
in 5-degree increments.

4.2 Learning Method

The system must learn a collision-free navigation behavior.
In this study, the behaviors are evolved using the SAMUEL
rule learning system. SAMUEL uses standard genetic al-
gorithms and other competition-based heuristics to solve
sequential decision problems. It features Lamarckian op-
erators (specialization, generalization, merging, avoidance,
and deletion) that modify rules based on interaction with
the environment. SAMUEL has to perform a number of
evaluations (on the order of 80 in the current study) in or-
der to provide history for the Lamarckian operators, to co-
alesce rule strengths, and to account for the noise in the
evaluations. The original system implementation and de-
fault learning parameters pertinent to evolution of rule sets
are described in greater detail in [Grefenstette 1990] and
[Grefenstette 1991].

4.3 Fitness Function Contribution

The fitness of the controller is proportional to the distance
the MAV traveled during successful trials when the goal lo-
cation is reached, or the minimum distance away from the
target during an unsuccessful trial when the agent crashed or
ran out of time, and contributes either [0.0-0.3] or [0.5-0.8]
respectively, to the global fitness functions. The contribu-
tion is calculated as follows:

fFIT (~x) =















0.3 ∗
(

1.0 − DA
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)

, unsuccessful trial

0.5 + 0.3 ∗
(

DS

DT

)

, successful trial

whereDA is the minimum distance away from the target
during the trial,DS is an initial distance away from the tar-
get, andDT is total distance traveled during the trial.

5 Evolution of Form

The behavior an agent adopts for a task is determined by
its ability to interact and sense the environment. There are



a wide variety of sensors that could be implemented on the
MAV, but the final make up of the sensor suite is constrained
by the size, weight, and power capacity of the vehicle. The
objective of this study is to evolve the most power-efficient
sensor suite that guarantees an efficient task-specific con-
trol. Power efficiency is assumed for this study to be in-
versely proportional to sensing ability of the agent deter-
mined by its sensor suite coverage.

5.1 Problem Representation

Our range sensor model is based on a simple range sensor
such as sonar or radar. It returns range to a single, closest
obstacle in its field of view. The possible evolvable sensor
characteristics include:

• range of the individual sensor;

• beam width of the individual sensor;

• placement of individual sensor on the vehicle.
In this study, the beam width and the range of each of the

available sensors are being evolved. The number of sensors
is evolved implicitly since values of beam width or range
equal to zero imply that the sensor isn’t used. Nine sensors
are placed symmetrically along the direction of flight and
radially from the center of the vehicle in increments of 22.5
degrees. To decrease the search space, the symmetry along
the forward axis is exploited and only the forward and four
sensors along one side are represented. The four sensors
along the other side of the vehicle are identical to the first
four. The maximum beam width of the sensor is 45 degrees
while the maximum sensing range is 20.0 feet.

The sensor suite characteristics are represented as a vec-
tor of ten values: the beam width and the range for five
unique sensors, each represented by a floating-point value
between 0.0 and 1.0. For each sensor, the first gene value is
mapped to 0 to 45 degrees that defines its beam width and
the second value is mapped to 0 - 20 feet that defines its
sensing range.

5.2 The Learning Method

The sensor suite characteristics are also evolved using
SAMUEL. In addition to the rule set representation,
SAMUEL allows a set of parameters to be attached to
each of the rule sets, which we use as described above to
represent the sensor characteristics. On these parameters,
SAMUEL uses Gaussian mutation (mu = 0 and sigma =
0.15) and two-point crossover. It uses a fitness-proportional
selection method to choose the individuals out of the popu-
lation – the number of offspring is proportional to the par-
ents fitness.

5.3 Fitness Function Contribution

The fitness of the sensor suite is inversely proportional to
its coverage and contributes [0.0 .. 0.2] to the global fit-
ness functions, but only if the agent behavior allows it to
complete the task, i.e. navigate safely to the target location.
The coverage of the sensor suite is calculated as the sum of
the areas of the sectors defined by the beam width and the

range of individual sensors. The contribution is calculated
as follows:

fFORM (~x) = 0.2 ∗

(

1.0 −
C(x)

CMAX

)

whereC(x) is the coverage of the sensor suite andCMAX is
the maximum possible sensor coverage for the experiment;
CMAX is currently equal to 1413.0 square feet.

6 Experimental Design

Similar to [Grefenstette 1992], we compared traditional
evolution in a simulated environment with no feedback from
the task environment, to case-based continuous and embed-
ded learning in a simulated environment which reflected
current state of the world. These approaches can be viewed
as alternative approaches to system development; in first
case, the learning is done offline in a simulation designed
by the experts while in the second case, the learning is
performed online after the system has been deployed. We
performed three separate experiments; two baseline exper-
iments which explored evolution in static simulation en-
vironment, and one which applied anytime coevolution of
form and function technique to a dynamic simulation envi-
ronment. The total length of the experiment was 450 gener-
ations with 100 members in the population. The complexity
of the environment was changed every 25 generations.

6.1 Experiment 1: Fixed complexity simulation model

In this experiment, all possible solutions throughout the
length of the experiment were evaluated in a series of sim-
ulated environments with the same, constant environment
complexity independent of the changing environment. The
tree density, which determines the complexity of the envi-
ronment, was set to 2.5 trees per 100 square feet, which was
previously determined to provide an adequate learning gra-
dient and acceptable level of generalization to other densi-
ties. Whenever the learning system found a solution which
outperformed the previous one in the simulation, the online
strategy was updated. The changes in the environment were
not registered in the simulation and the learning continued
uninterrupted throughout the whole experiment.

6.2 Experiment 2: Sampled complexity simulation
model

Similarly to the first baseline experiment, in this experi-
ment, all the individuals were evaluated in a series of sim-
ulated environments of varied complexity independent of
the changing environment. The tree density of the environ-
ment was chosen at random from uniform distribution of
three densities, 1.25, 2.5, and 5 trees per 100 square feet.
Whenever the learning system found a solution, which out-
performed the previous one in the simulation, the online
strategy was updated. To establish the baseline, the changes
in the environment were not registered in the simulation and
the learning continued uninterrupted through out the whole
experiment.



0 100 200 300 400

0

20

40

60

80

100

Generations

P
er

fo
rm

an
ce

 (
%

)

L M H H L M L H M L M H M L H L H M

Fixed Sampled Anytime

Figure 3: Summary of task performance in a changing en-
vironment.

6.3 Experiment 3: Dynamic simulation model

In this experiment, the individuals of the current generation
were evaluated in a series of simulated environments with
complexity determined by the current, changing environ-
ment. The tree density of the environments varied between
the same densities as in the previous model: 1.25, 2.5, and
5 trees per 100 square feet. Each density was recognized
as a separate case. For the first 3 periods (25 generations
each), the cases were presented in increasing order of com-
plexity. For the rest of the experiment, the complexity of the
environment within each block of three cases was selected
at random. Each case was presented a total of six times.
For this study, the environments were presented in the fol-
lowing order: L (1.25), M (2.5), H (5.0), H, L, M, L, H,
M, L, M, H, M, L, H, L, H, M. Whenever the learning sys-
tem found a solution which outperformed the previous one
in the simulation, the online strategy was updated. When
the change in the environment was detected, the simulation
was updated and the offline learning was reinitialized ac-
cording to case-base anytime learning strategy. On the first
occurrence of the case, the population was initialized using
a homogenous, simple default set of rules. The subsequent
times, one half of the initial population was initialized based
on a similarity metric between the current case and the pre-
viously observed cases in the case base, while the other half
of the population was initialized using a default rule set. In
this study, the similarity metric was simply defined as abso-
lute difference in tree density of the environment.

7 Results

The results of anytime coevolution of form and function in a
changing environment for each of the approaches described
in Section 6 are summarized in Figures 3 through 6 and in
Table 1.
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Figure 4: Task performance in the low complexity (1.25
trees per 100 sq. ft) environment.

Figures 3 through 6 show online performance of the best
individuals for each approach. Each data point in the graphs
represents the average performance of a best-so-far individ-
ual over 100 episodes. The data was averaged over 3 inde-
pendent sets of runs for each of the baseline and the anytime
learning experiments. In this study, the performance is de-
fined as the number of times the MAV reached the goal out
of a hundred. Figure 3 summarizes online performance of
the system in the changing environment. The vertical lines
in the plot mark the environment changes. The complex-
ity of the environment for each period is provided along the
horizontal axis; L indicates the lowest, M the medium, and
H the highest tree density. Figures 4 through 6 present each
level of the environment complexity individually with all
the relevant periods concatenated.

The case-base continuous and embedded learning was
able to outperform both alternative approaches. It is also
worth noting that even though the simulation models were
not updated during learning in Experiments 1 and 2, the
evolved strategies were to a certain degree tolerant to the
changes of the environment. Further, the strategies evolved
in a simulation with a fixed complexity were more general
than the ones evolved in a simulation which sampled the
complexity space.

Table 1 summarizes the characteristics of the final sensor
suites for each approach. The data was averaged over 3 in-
dependent sets of runs for each of the baseline and the any-
time learning experiments. The beam width and the range
of the five unique sensors and the total coverage of the sen-
sor suite are presented. The goal of the evolution of form
was to evolve a sensor suite with minimal coverage in or-
der to maximize power efficiency of the vehicle which was
defined to be inversely proportional to the sensor coverage.

By design, anytime learning approach allowed for higher
level of specialization of sensors suites for individual cases,
but it was even able to improve on the sensor suite evolved



Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Cov
Width Range Width Range Width Range Width Range Width Range

Fixed 0.0 0.0 12.5 1.7 14.8 6.5 25.0 6.6 5.4 14.5 106.5
Sampled 15.8 10.8 7.5 3.7 3.2 5.7 29.6 11.8 2.2 10.4 108.4

Anytime (L) 23.2 9.8 14.5 10.4 16.2 12.2 30.9 6.1 5.1 13.7 108.6
Anytime (M) 17.0 10.3 16.1 8.9 27.5 4.3 11.9 4.4 3.6 11.9 82.1
Anytime (H) 14.0 7.7 18.1 8.7 12.2 6.5 9.7 1.7 2.9 14.1 70.8

Table 1: Characteristics of the sensor suites using traditional evolution in a fixed and sampled simulation environments, and
using case-based anytime learning in dynamic simulation environment. Beam width and the range of the unique sensors
and the total coverage of the sensor suites are presented.
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Figure 5: Task performance in the medium complexity (2.5
trees per 100 sq. ft) environment.

in the static medium complexity environment. In general,
the sensor suites evolved for the low density environment
did not require full set of sensors and all sets included a nar-
row, far reaching front sensor, and several shorter side sen-
sors. The higher density environments required more uni-
form distribution of sensing coverage between all available
sensors.

These results show that anytime learning is a feasible
approach to continuous coevolution of form and function.

8 Conclusions

In this paper, we presented an approach to continuous and
embedded coevolution of form (the morphology) and func-
tion (the control behavior) for autonomous vehicles. While
this study focused only on coevolution of the characteris-
tics such as beam width and range of individual sensors in
the sensor suite, and the reactive strategies for collision-free
navigation for an autonomous micro air vehicle, this ap-
proach could be easily extended to evolution of more com-
plete morphologies for more complex missions. The ad-
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Figure 6: Task performance in the high complexity (5.0
trees per 100 sq. ft) environment.

dition of an anytime (continuous and embedded learning)
mechanism allows for more robust and adaptive systems. In
particularly, it opens the door for vehicles that can morph,
that is, change their configuration on the fly for different
aspects of a mission or to handle unexpected situations.

Experimental results were presented which showed that
continuous and embedded learning is a feasible approach to
anytime coevolution of form and function. Further experi-
ments will be performed to determine appropriate anytime
learning components for the domain such as re-initialization
policies or minimum case presence. We plan to extend this
work to learn characteristics of an air vehicle’s airframe that
might be changed during a mission, such as the length of the
tail structure, and the shape and geometry of the airfoils.
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